metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Takashi Aridomi* and Takumi Konno

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Correspondence e-mail: aridomi@ch.wani.osaka-u.ac.jp

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.036 wR factor = 0.099 Data-to-parameter ratio = 21.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography

All rights reserved

Δ_{L} -(L-Cysteinato- $\kappa^{2}N$,S)bis(ethylenediamine- $\kappa^{2}N$,N')cobalt(III) bis(perchlorate) monohydrate

In the title compound, $[Co(C_3H_6NO_2S)(C_2H_8N_2)_2](ClO_4)_{2}$ ·-H₂O, the central Co^{III} atom is coordinated by one *N*,*S*bidentate L-cysteine (L-H₂cys) and two *N*,*N*'-bidentate ethylenediamine (en) ligands in a slightly distorted octahedral geometry with a Δ configuration. The L-Hcys chelate ring adopts a λ conformation, while the two en chelate rings have a δ conformation.

Comment

Freeman et al. (1978) reported the synthesis and characterization of two diastereomers (Δ_L and Λ_L) of an L-cysteinato cobalt(III) complex, [Co(L-cys-N,S)(en)₂](ClO₄) (L-H₂cys is Lcysteine and en is ethylenediamine), together with those of its protonated form, $[Co(L-Hcys-N,S)(en)_2](ClO_4)_2$. While they determined crystal structures of Δ_{L} - and Λ_{L} -[Co(L-cys-N,S)(en)₂](ClO₄) by X-ray crystallography, neither the $\Delta_{\rm L}$ nor the $\Lambda_{\rm L}$ isomer of the protonated form has been structurally characterized. Recently, we obtained single crystals of the protonated Λ_L isomer in the course of the reactions of Λ_L - $[Co(L-cys-N,S)(en)_2]^+$ with transition metal ions, and its structure was determined to be Λ_L -[Co(L-Hcys-N,S)(en)₂]-(ClO₄)·1.5H₂O by X-ray analysis (Aridomi et al., 2006). In this study, we prepared single crystals of the protonated $\Delta_{\rm L}$ isomer, Δ_{L} -[Co(L-Hcys-N,S)(en)₂](ClO₄)₂·H₂O, (I), and its structure was established by X-ray crystallography.

X-ray analysis of (I) confirmed the presence of a divalent complex cation, $[Co(L-Hcys-N,S)(en)_2]^{2+}$, two ClO_4^- anions and one water molecule (Fig. 1). The complex cation consists of a central Co^{III} atom, an *N*,*S*-bidentate L-Hcys ligand having a protonated COOH group, and two *N*,*N*'-bidentate en ligands. The Co^{III} atom in (I) is situated in a slightly distorted octahedral geometry with a Δ configuration, coordinated by an L-Hcys and two en ligands [*trans* N-Co-N = 175.60 (9) and 177.02 (9)°, *trans* N-Co-S = 176.78 (7)°; Table 1]. The average Co-N distance in (I) is 1.984 (2) Å, which is similar to that in Δ_L -[Co(L-cys-*N*,*S*)(en)_2](ClO_4) [1.978 (8) Å]. On the other hand, the Co-S distance in (I) [2.2376 (8) Å] is slightly shorter than that in Λ_L -[Co(L-cys-*N*,*S*)(en)_2](ClO_4) [2.252 (3) Å].

Received 21 November 2006 Accepted 21 November 2006

m3554 Aridomi and Konno • [Co(C₃H₆NO₂S)(C₂H₈N₂)₂](ClO₄)₂·H₂Odoi:10.1107/S1600536806050033Acta Cryst. (2006). E**62**, m3554–m3556

Figure 1

The molecular structure of (I), showing the atom-numbering scheme and 30% probability displacement ellipsoids.

Figure 2

A view of the one-dimensional chain structure of (I), showing the atomnumbering scheme. Dashed lines indicate N-H···O hydrogen bonds. [Symmetry code: (') $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.]

In (I), the five-membered L-cys-*N*,*S* chelate ring adopts a *gauche* conformation with a preferred δ form such that the non-coordinated COOH group takes an equatorial orientation. This was also the case for the L-cys-*N*,*S* chelate ring in Δ_{L} -[Co(L-cys-*N*,*S*)(en)₂](ClO₄), which contains an equatorially oriented COO⁻ group. However, both the en chelate rings in (I) have a λ form, which is distinct from the λ and δ forms for the en chelate rings in Δ_{L} -[Co(L-cys-*N*,*S*)(en)₂](ClO₄).

As shown in Fig. 2, one of the five amine groups of the complex cation in (I) is hydrogen bonded with the COOH group of the neighboring complex cation, constructing a onedimensional chain structure (Table 2). The other amine groups of the complex cation form hydrogen bonds with ClO_4^- counteranions (Table 2).

Experimental

To a solution containing Δ_{L} -[Co(L-Hcys-*N*,*S*)(en)₂](ClO₄)₂·H₂O (0.20 g, 0.39 mmol) in water (5 ml) was added CdCl₂ (0.09 g, 0.40 mmol). The mixture was stirred at room temperature for 1 h. To

the brown reaction solution was added d/l-tartaric acid (0.50 g), and the resulting solution was kept at room temperature for one week. The resulting dark-brown prism-shaped crystals of (I) were collected by filtration.

Crystal data

$$\begin{split} & [\text{Co}(\text{C}_3\text{H}_6\text{NO}_2\text{S})(\text{C}_2\text{H}_8\text{N}_2)_2] \\ & (\text{CIO}_4)_2\cdot\text{H}_2\text{O} \\ & M_r = 516.21 \\ & \text{Orthorhombic}, \ P_{2_12_12_1} \\ & a = 11.987 \ (4) \text{ Å} \\ & b = 16.926 \ (6) \text{ Å} \\ & c = 9.209 \ (3) \text{ Å} \\ & V = 1868.5 \ (12) \text{ Å}^3 \end{split}$$

Data collection

Rigaku AFC-7R diffractometer ω -2 θ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.491, T_{max} = 0.666$ 6218 measured reflections 5431 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.099$ S = 1.075431 reflections 255 parameters H atoms treated by a mixture of independent and constrained refinement Z = 4 D_x = 1.835 Mg m⁻³ Mo K α radiation μ = 1.38 mm⁻¹ T = 296 (2) K Prism, dark brown 0.60 × 0.40 × 0.32 mm

5056 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 30.0^{\circ}$ 3 standard reflections every 150 reflections intensity decay: 1.0%

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0657P)^{2} + 0.6912P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.78 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.77 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL97* Extinction coefficient: 0.0237 (14) Absolute structure: Flack (1983), no Friedel pairs Flack parameter: -0.004 (12)

Table 1

Selected geometric parameters (Å, °).

Co1-S1	2.2376 (8)	Co1-N3	1.978 (2)
Co1-N1	1.991 (2)	Co1-N4	2.019 (2)
Co1-N2	1.954 (2)	Co1-N5	1.976 (2)
S1-Co1-N4	176.78 (7)	N1-Co1-N3	175.60 (9)
N2-Co1-N5	177.02 (9)		

Ta	ble	2	
----	-----	---	--

		•	
Hydrogen-bond	geometry	(A,	°)

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H5\cdotsO1^{i}$	0.90	2.13	2.906 (3)	144
O2−H1···O11	0.809 (19)	1.89 (3)	2.603 (3)	147 (5)
N1-H3···O3	0.90	2.20	3.042 (4)	156
$N1-H2\cdots O5^{ii}$	0.90	2.25	3.013 (3)	143
N2-H5···O3	0.90	2.43	3.095 (4)	131
$N2-H4\cdots O7$	0.90	2.30	3.141 (4)	155
N3-H7···O8 ⁱⁱⁱ	0.90	2.67	3.307 (5)	128
$N3-H6\cdots O8^{iv}$	0.90	2.61	3.379 (6)	144
N4-H9···O3	0.90	2.45	3.106 (3)	130
$N5-H10\cdots O5^{ii}$	0.90	2.42	3.154 (4)	139
$N5-H11\cdots O6^{v}$	0.90	2.32	3.106 (4)	147

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (iii) $-x + \frac{1}{2}, -y - \frac{1}{2}, -z + 1$; (iv) x, y, z - 1; (v) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$.

H atoms bonded to C and N atoms were placed at calculated positions (C-H = 0.97 Å and N-H = 0.90 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C,N)$. The H atom of the carboxyl group was found in a difference Fourier map and refined with restrained geometrical parameters [O-H = 0.82 (2) Å and $U_{iso}(H) = 1.5U_{eq}(O)$]. H atoms of the water molecule were also found in a difference Fourier map and refined with restrained geometrical parameters [O-H = 0.85 (2) Å, H···H = 1.38 (2) Å and $U_{iso}(H) = 1.5U_{eq}(O)$].

Data collection: *WinAFC* (Rigaku/MSC, 2004); cell refinement: *WinAFC*; data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999). TA expresses his special thanks for the center of excellence (21COE) program 'Creation of Integrated EcoChemistry of Osaka University'.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Aridomi, T., Igashira-Kamiyama, A., Kawamoto, T. & Konno, T. (2006). Acta Cryst. E62, m1838–m1840.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Freeman, H. C., Moore, C. J., Jackson, W. G. & Sargeson, A. M. (1978). *Inorg. Chem.* 17, 3513–3521.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Rigaku/MSC (2004). WinAFC and CrystalStructure. Version 3.6.0. Rigaku/ MSC, The Woodlands, Texas, USA.